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Abstract—Practical considerations for future supercomputer
designs will impose limits on both instantaneous power con-
sumption and total energy consumption. Working within these
constraints while providing the maximum possible performance,
application developers will need to optimize their code for speed
alongside power and energy concerns. This paper analyzes the
effectiveness of several code optimizations including loop fusion,
data structure transformations, and global allocations. A per
component measurement and analysis of different architectures
is performed, enabling the examination of code optimizations on
different compute subsystems. Using an explicit hydrodynamics
proxy application from the U.S. Department of Energy, LULESH,
we show how code optimizations impact different computational
phases of the simulation. This provides insight for simulation
developers into the best optimizations to use during particular
simulation compute phases when optimizing code for future
supercomputing platforms. We examine and contrast both x86
and Blue Gene architectures with respect to these optimizations.
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I. INTRODUCTION

For Exascale class supercomputers, power and energy will

become first-class operating concerns. Potential instantaneous

power caps as well as operational cost concerns over total

energy usage will lead system and application developers

to pursue optimizations for power and energy consumption,

in addition to performance. The implications of power and

energy concerns for supercomputers have a broader impact

than compliance with the U.S. Department of Energy 20 MW

system power limit. Many practical issues arise when using

tens of MWs of power, such as large and fast swings in power

and load prediction to match power generation and distribution

to anticipated needs. This is an important issue to address

for utility companies providing power to data centers as high

power demands or large swings in power demand can increase

the cost of energy delivery. Therefore, the management of

power instead of energy can be more important than energy

alone, especially if energy/power conservation goals are cost

related. These factors reinforce the need to understand how

applications can be optimized for both performance and power

on future systems.

When analyzing the performance and power implications of

different application optimizations, it is important to examine

the impact of individual regions, in addition to the entirety

of the application. Runtime-based power or energy saving

approaches have shown that benefits can be achieved without

application code changes by examining an entire execution

period and finding energy and power friendly ways to execute

that application [1]. However, such approaches are limited

to aggregate static approaches or runtime methods requiring

resources during execution that may introduce noise. In ad-

dition, because energy saving runtime methods do not alter

application code, no benefits can be derived from increasing

computational or memory efficiency. Code optimization at a

per-region basis offers a fine-grained environment where de-

velopers can optimize their code for performance and potential

power savings. By analyzing an application at the same level

of granularity as a developer, we can provide insight to them

on how performance tuning, power usage, and energy costs

interplay. Runtime methods, even those that attempt to take

advantage of phases, can only react to the existing code’s

behavior during the current execution phase. The methods we

use in this study provide insight on a per-phase basis and, for

non-global optimizations, a better understanding into which

optimizations work well for individual kernels. This enables

much finer grained optimizations and subsequently broadens

opportunities to reduce power and save energy compared to a

whole-application based approach.

This paper analyzes the impact of different optimizations

at a sub-application phase for three different architectures:

IBM Blue Gene/Q (BG/Q), server-class Intel Ivy Bridge, and

consumer-class AMD Fusion APU. This comparison builds

on our previous work [2], where we analyzed the impact

of different optimization methods at an application level

granularity for a BG/Q system. By comparing optimization

techniques on a low power HPC-specific architecture, an

enterprise class server system, and a low-power, low-cost

consumer APU based system, this paper provides insight

into optimization techniques for multiple potential Exascale

architectural approaches. Exploring multiple architectures is

key to determining what optimization methods may be broadly

applicable and which might be of great use on only a subset

of architectures.

This paper characterizes the individual kernels in an explicit

hydrodynamics application, identifying the most important

kernels in terms of execution time, power and energy con-

sumption for multiple different architectures. We investigate

the impact of a group of optimization techniques on each

phase and provide insight into the optimization methods that

are beneficial across many architectures versus those that

are important for only certain architectures. We outline our



contributions as follows.

1. This work is the first of its kind in providing a per

application phase, per system component analysis of the power

and energy impacts of program transformations.

2. Our results from an explicit hydrodynamics proxy appli-

cation apply to other codes with similar computational ker-

nels including the Lawrence Livermore National Laboratory

(LLNL) applications Ares and ALE3D [3], [4].

3. We identify significant correlations between program

optimizations and power, energy, performance, and machine

characteristics.

4. We provide guidance to system and application develop-

ers when tuning for performance, power, and energy.

5. We demonstrate that the analysis of applications on a per

physics package, phase, or region is necessary to fully realize

the benefits of optimizations. Similarly, fine-grain, component-

based analysis is necessary to leverage potential improvements

in power and energy consumption.

II. LULESH

The Livermore Unstructured Lagrange Explicit Shock Hy-

drodynamics (LULESH) mini-app was originally developed

as one of the five challenge problems for the DARPA UHPC

program. Explicit hydrodynamics can consume up to one third

of the compute cycles at the U.S. Department of Defense

data centers. LULESH provides a simplified source code that

contains the data access patterns and computational character-

istics of larger hydrodynamics codes. It uses an unstructured

hexahedral mesh with two centerings and solves the Sedov

problem. Because of its smaller size, LULESH allows for

easier and faster performance tuning experiments on various

architectures. The successful lessons learned from it can then

be applied back to larger production codes [3]. LULESH

has been ported to a wide variety of programming models

to explore their various performance and productivity advan-

tages [5] and is currently being used in the Department of En-

ergy’s Extreme-Scale Technology Acceleration program1, the

CORAL procurement2, and the ExMatEx co-design center3.

A. Program Optimizations

This paper focuses on how optimizations impact per-

formance alongside power and energy, therefore, we study

optimizations that have been shown to decrease execution

time [3]. These optimizations include loop fusion, data layout

transformations, global allocation, and vectorization. Some of

the lessons learned from these optimizations on LULESH

have been ported into full hydrodynamics applications such

as ALE3D [3], a structural engineering code, and Ares [4], a

high energy density physics code. In this work, we focus on

loop fusion, data layout transformations, and global allocation

optimizations because they reduce data motion, which will be

increasingly important on future machines in terms of power

and performance.

1https://asc.llnl.gov/fastforward/
2https://asc.llnl.gov/CORAL-benchmarks/
3http://codesign.lanl.gov/projects/exmatex/index.html

Loop fusion is an optimization that combines multiple loops

with the same iteration space together. When loops that access

the same arrays are combined, the amount of data needed

to move through the memory hierarchy is reduced [6]. An

example of this optimization for two loops in LULESH is

shown below. The velocity and position update is on the left

and the fused version on the right.

for (i=0; i<nodes; ++i) for (i=0; i<nodes; ++i)

// Calc. new velocity // Calc. new velocity

xdtmp=xd[i]+xdd[i]*dt xdtmp=xd[i]+xdd[i]*dt

if (FABS(xdtmp)<ucut) if (FABS(xdtmp)<ucut)

tmp = Real_t(0.0) tmp = Real_t(0.0)

xd[i] = xdtmp xd[i] = xdtmp

for (i=0; i<nodes; ++i)

// Calc. new position // Calc. new position

x[i] += xd[i] * dt x[i] += xd[i] * dt

The version of LULESH we use for our fused code contains

12 loops from the original 45. Fusing loops further would

result in transformations that are not possible or difficult to

maintain in the full codes modeled by LULESH [3].

Data layout transformations involve changing a struct of

arrays to an array of structs. These transformations can reduce

the amount of data moved through the memory hierarchy by

combining accesses to indirectly accessed data structures [7].

Also, they can reduce the number of streams being prefetched

from memory, resulting in more effective use of hardware

stream prefetchers. In LULESH, we combine arrays into 10

different structures, see Table I. The listing below shows

the resulting data structure, coords (right side), from the

combination of the nodal position variables x, y, and z (left

side).

double x[n]; struct xyz { double x,y,z; }

double y[n]; coords xyz[n];

double z[n];

Global allocation involves moving all the malloc and free

statements outside of the timestep loop. Therefore, all tem-

porary variables are allocated once and then reused without

freeing space throughout the program. The listing below

provides an example of the global allocation transformation;

original code on the left, resulting code on the right.

while(time < maxtime) malloc( temp_space )

malloc( temp_x ) while(time < maxtime)

for(i=0; i<nodes; ++i) for(i=0; i<nodes; ++i)

// calculations // calculations

free( temp_x ) for(i=0; i<elems; ++i)

malloc( temp_y ) // calculations

for(i=0; i<elems; ++i) free( temp_space )

// calculations

free( temp_y )

Another option that can result in a similar performance gain

is using a thread aware allocation library such as TCMalloc4 In

some cases these libraries can result in the same performance

as global allocation without the programming challenges or

memory costs needed to maintain global temporary variables.

It is worth noting that recent attempts to provide automatic

compilation-based code optimizations [8] similar to the ones

4http://goog-perftools.sourceforge.net/doc/tcmalloc.html



we study here have been difficult, working on simplified

versions of LULESH that limit its applicability to a full code.

In this work we do not modify the unstructured mesh access

and while we limit the techniques we can use, we know they

are applicable to the code being represented by LULESH.

TABLE I. TRANSFORMED DATA STRUCTURES.

Description Arrays Description Arrays

Temporary Forces fx elem, fy elem, fz elem Coordinates x, y, z

Principle Strains dxx, dyy, dzz Velocities xd, yd, zd

Accelerations xdd, ydd, zdd Forces fx, fy, fz

Velocity Gradient delv xi, delv eta, delv zeta Presure and Q p, q

Coordinate Gradient delx xi, delx eta, delx zeta Q Terms ql, qq

III. MACHINE ARCHITECTURE AND MEASUREMENT

INFRASTRUCTURE

Our experiments consist of measuring the impact of code

optimizations on power, energy, and execution time for three

different architectures: IBM BG/Q, Intel Ivy Bridge, and AMD

Fusion (see Table II). In the remainder of this section, we

describe the infrastructures we used to measure power, energy,

and performance events.

TABLE II. MACHINE ARCHITECTURE.

Node Processor(s) Memory OS

IBM

BG/Q

PowerPC A2, 16 user cores,

SMT-4, 1.6 GHz

DDR3-1333 MHz,

16 GB, 43 GB/s

CNK

Intel Ivy

Bridge

Xeon E5-2695V2 dual socket,

10x2 cores, SMT-2, 2.4 GHz

DDR3-1866 MHz,

128 GB, 59.7x2 GB/s

SLES11

AMD

Piledriver

AMD A10-5800K APU, 4

CPU cores, 3.8 GHz

DDR3-1600 MHz,

16 GB, 12.8 GB/s

RHEL6

On BG/Q, we used IBM’s high-resolution environmental

monitoring, capable of measuring power and energy at a

node-board granularity (32 compute nodes). Each of the two

Direct Current Assemblies (DCAs) included on a board has

a microprocessor unit that measures current and voltage of

at most seven domains (see Table III). Through the EMON2

(Environmental Monitoring version 2) API, a user application

retrieves cumulative energy consumption at a given point

in time. With two snapshots, the EMON2 library computes

the energy difference and the average power consumption

for the given interval. In our BG/Q experiments, we capture

power and energy consumption every 10 ms for all seven

domains. More information on BG/Q’s high-resolution power

infrastructure can be found elsewhere [9]. We measure perfor-

mance events along-side power snapshots through the BGQT

library [9], which is built on top of the EMON2 API and the

Blue Gene Hardware Performance Monitoring (BGPM) API.

On the Ivy Bridge and Fusion systems, we used Penguin’s

PowerInsight measurement device, a small out-of-band instru-

ment designed to capture power/energy measurement readings

from individual nodes and provide these results to a centralized

master node [10]. It includes an ARM Cortex A8 processor

with 256MB of RAM and a variety of output methods such

as a 10/100 Ethernet connector, which was used in this

work for collecting the power measurements. The main ARM

TABLE III. BG/Q AND POWERINSIGHT POWER DOMAINS.

BG/Q PowerInsight Alias

BQC core logic power CPU socket power Core

SDRAM-DDR3, BQC DDR3 I/O DDR3-1600 Memory

Optical module power Motherboard & Chipset

Other

Optical module power, PCI Express Solid State Drive

BQC and BQL HSS I/O Miscellaneous PCIe

BQC core array power InfiniBand NIC (PCIe)

BQL core power

Cortex board is connected to a sensor daughter board which

enables the connection of multiple inline sensors, allowing

per component measurements to be taken at high speed. The

measurement accuracy of PowerInsight has been determined

to average 1.8% of the true values. More information on

the PowerInsight design and its verification can be found

elsewhere [10]. The PowerInsight measurement was set to

10 ms sampling intervals for all of the available sampling

domains (see Table III), identical to the BG/Q sampling period.

IV. EXPERIMENTAL METHODOLOGY

To study individual optimizations and their combined effect

on power, energy, and performance, we developed 2
3 versions

of LULESH representing all optimization combinations (see

Table IV). We compare the different optimizations on each

architecture relative to an unoptimized version (NoOpt) of

LULESH. We use the term unoptimized to mean no fusion,

global allocation, data layout transformations, or their combi-

nations as opposed to compiler optimization level 0. On BG/Q,

NoOpt was built with the IBM compiler while on Fusion and

Ivy Bridge, we used the Intel compiler. Note that we employ

the best compiler available for each platform.

TABLE IV. LULESH OPTIMIZATIONS.

ac Global allocation

dl Data structure layout transformations

fu Loop fusion

BG/Q NoOpt IBM xlc++ with -O3 -qhot -qstrict -qsmp=omp

x86 NoOpt Intel icc with -O3 -openmp

For each version of LULESH, we ran one process per

NUMA domain (e.g. socket) with the process pinned to that

socket. We ran this way to mimic an MPI process of a large

application as it would be run in production, where each MPI

task would use a single NUMA domain. On BG/Q, we ran

1 process with 60 OpenMP threads (15 cores using 4 threads

per core) per node and replicated this workload across the

entire node-board. We dedicated the 16th core of one node

for the power and profiling monitoring thread. On the Ivy

Bridge we ran 1 process per NUMA domain with a total of 20

OpenMP threads (one per physical core) per node. Although

Hyperthreading was enabled, only one OpenMP thread per

core was used. On the Fusion we ran 1 process with 4 OpenMP

threads per node to fill all four cores; the GPU available on

the Fusion APU was not used. All platforms used a problem

size of 120
3 per node, ran for 130 iterations, and started

measurements after the application’s initialization phase.



To understand the static and dynamic power consumption

of LULESH, we executed a single thread benchmark that

performs no work on each of the systems. The power con-

sumed by this benchmark represents the static power. All

of our systems were configured to not enter sleep states for

CPU cores, so this is a measure of power/energy of no-active-

work performance with a small amount of potential OS noise.

To calculate dynamic power we subtracted this static power

measurement from the total power consumed by LULESH.

In this paper we report average power rather than peak

power for a few reasons. For a programmer seeking to max-

imize performance, power over a period of time is what will

put thermal load on a chip and cause it to reduce its frequency

or allow it to increase into Turbo mode. For a full application

where load imbalance occurs, being able to save power on

lightly loaded nodes and allow other nodes with heavier loads

to run at higher clock speeds may be more important than

preventing spikes on the most loaded nodes. In addition, if data

centers’ users are charged for electricity, average power times

runtime and total energy usage are equivalent and these are the

two free variables that can be traded off when optimizing.

V. POWER, ENERGY, AND PERFORMANCE AT A GLANCE

In order to evaluate the power and energy impact that

the proposed optimizations have on a per region basis on

LULESH, it is desirable to investigate multiple computer

architectures to identify trends. As the optimization of appli-

cations will impact dynamic power consumption, it is helpful

to quantify the dynamic versus static power consumption of

architectures. Figure 1 shows the static and dynamic power

draw for multiple components for a BG/Q system and two

x86 architectures. We observe that BG/Q has a significant

static power component, comprising 75% of the overall power

draw. The x86 systems have 22% and 36% static power draws

for the Ivy Bridge and Fusion systems respectively. This

illustrates two key points. First, that BG/Q, while well known

for its low power architecture, leaves limited opportunities for

power savings due to its large static component. Second, that

the core and memory power draw dominates (78% or more)

overall system power, which for the x86 architectures is also

predominantly dynamic power.

Figure 1 shows the dynamic power drawn by each archi-

tecture. The two low power architectures, BG/Q and AMD

Fusion, both draw similar amounts of power per processing

node. However, the Fusion architecture has a much larger

dynamic power draw than the BG/Q, likely because it has

fewer cores but at a higher clock rate (4-3.8GHz cores vs.

16+1-1.6GHz cores). The comparison with the Ivy Bridge

system in terms of core power draw should be made carefully,

the Ivy Bridge system is a dual socket system, so the core

power draw of 139 Watts is an aggregate of two 10-core CPUs.

Examining the memory power consumption, the Fusion and

BG/Q systems have very similar power consumption, which

is expected given their identical amount of memory (16 GB),

with the small difference between them corresponding to the

memory frequency differences of the DDR3-1333 in the BG/Q
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Fig. 1. Power consumed by the NoOpt configuration itemized by component
for all three architectures.

versus the DDR3-1600 memory in the Fusion system. The Ivy

Bridge system appears to draw significantly more power for its

memory, but this corresponds to 8x as much memory (128 GB

vs. 16 GB), running at 1866 MHz.

Figure 2 shows the normalized runtime and dynamic power

and energy consumption for the various optimized versions

of LULESH. The BG/Q and Ivy Bridge systems benefit from

fused loops, global allocations and data layout transformations.

The AMD Fusion system, with its consumer-grade APU does

not see this same trend. The best configuration for the Fusion

APU is fused loops with global allocations. It should be noted

that the Fusion system has the greatest improvement in runtime

of any of the systems, due to the ability of the optimizations

to work around system bottlenecks. The Fusion system has

significantly smaller caches (2MB vs 25MB and 32MB for

the Ivy Bridge and BG/Q respectively), and lower memory

bandwidth, which creates opportunities for improving perfor-

mance significantly through better memory management.
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Fig. 3. Execution time and dynamic power for each power domain and
optimization on BG/Q, Ivy Bridge, and Fusion.

For each of the x86 architectures it is interesting to note

that the best optimizations in terms of runtime are also

relatively good for instantaneous power consumption, being

approximately equal to or better than the baseline case with no

optimizations. Combined with decreased runtime, this trans-

lates into significant energy savings for both the Ivy Bridge

and Fusion systems. This is an important finding showing

that the performance of the application can be improved with

no major increase in power consumption. Unfortunately these

results also show that significant reductions in instantaneous

power consumption at an application level are difficult to

achieve on most platforms with the application optimizations

that were explored. The BG/Q case differs from the x86 results

slightly. For the BG/Q system, the third best runtime set of

optimizations draws power approximately equal to the non-

optimized case. The best optimization combination for runtime

and energy consumes approximately 15% more power than the

baseline case. This difference is primarily due to core power

consumption differences between the BG/Q optimizations as

seen in Figure 3. The x86 Fusion system has relatively flat

CPU power consumption across the optimization with lower

memory power draw for non data layout optimization com-

binations. The Ivy Bridge system shows slightly higher core

power consumption with lower memory power consumption,

which balances out to be neutral in terms of the overall system.

While we find that global allocations alone work well for

the two systems with the largest caches, the Fusion system did

not see significant benefit from using them. The Fusion system

also saw a significant benefit from loop fusion combined

with global allocations. The impact was the largest of any

of the architectures with any combination of optimizations.

This illustrates that from a high level point of view, some

optimizations can be applied regardless of the architecture

used and see benefits. However, other optimizations can yield

very high returns on some platforms while providing much

more modest improvement on others. Finally, we observe

that some combinations of optimizations are not beneficial

on certain systems (e.g. fu+ac+dl relative to fu+ac on the

Fusion system, see Figure 3). The increase in power con-

sumption for the Fusion’s memory subsystem can be traced

to the combination of two optimizations, loop fusion and data

layout. Such optimizations when combined together increase

the likelihood of the Fusion’s memory controller recognizing

a limited number of simultaneous streams (as data layout

decreases the total number of streams), which is closer to the

maximum of 8 streams supported by the controller. In addition,

the loop fusion also allows the memory controller to recognize

certain patterns more easily, leading to many more pre-fetch

operations than would occur in the non-optimized case.

Our analysis so far focused on the single-node versions of

LULESH as opposed to the MPI multi-node versions. The

lessons from the former, however, apply to the latter for the

following reasons: (1) the LULESH regions we analyzed,

which account for over 90% of the overall runtime, do not

perform network communication, therefore the compute bene-

fits at the node level should carry over to multi-node systems,

assuming no significant load-imbalance; (2) LULESH is not

communication intensive (less than 10% of runtime is spent in

communication for large runs) and is load balanced; and (3)

while network power is of interest, there is little opportunity

for saving power with optimizations because the majority of

power is consumed by network SERDES and does not change

based on usage as illustrated in the ”other” column in Figure 1

for AMD and BG/Q (Intel results do not include network

power).

To demonstrate that, indeed, the lessons learned from our

experiments carry over the MPI multi-node case, we ported

fusion and global allocation (fu and ac) to the MPI version of

LULESH, ran these versions on 64 nodes on 2 different ar-

chitectures, and compared them with the single-node versions.

Figure 4 shows the effect of optimizations on execution time,

dynamic power and energy, and memory and processor power.

On BG/Q, the single-node energy, power, and performance

match accurately the MPI data (BGQ-MPI) differing by no

more than 3%. On AMD, the single-node data and the MPI

data (Fusion-MPI) show similar behavior but the margin of

difference is greater (up to 9% in memory power), because the

small caches on the AMD cores are susceptible to evictions

caused by the MPI library and OS noise.

VI. FINE-GRAIN ANALYSIS OF OPTIMIZATIONS

In the previous section we compared and contrasted the

program-level effects of optimizations on power, performance,

and energy across three architectures. We now investigate

the effects of optimizations at a finer-granularity by focusing

on five code regions that consume over 90% of LULESH’s

execution time. The execution time of each region on BG/Q

using the NoOpt configuration is shown in Table V. Only

results from BG/Q are presented because the percentage of

total time spent in each region is within 5% for the other

architectures.
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Fig. 4. Single-node vs. MPI versions of LULESH for BG/Q (left) and Fusion
(right). BG/Q should be compared against BG/Q-MPI and Fusion against
Fusion-MPI.

TABLE V. EXECUTION TIME PER REGION ON BG/Q.

Region 1 Region 2 Region 3 Region 4 Region 5

Runtime (secs) 11.85 32.02 1.10 13.80 16.21

Fraction of total 15.80% 42.71% 1.46% 18.41% 21.62%

A. LULESH: A Look Inside

In LULESH each region we selected represents a part of

the production code that often has multiple options associated

with it or connects regions of code that have multiple options.

For example, the EOS and MaterialApply in Region 5 will

be different depending on what material model is being used

and Region 2 for the hourglass filter will frequently change

based on the problem being run. Due to the need to modularly

swap out the piece of physics based on the problem being

run or during runtime as conditions change in the simulation,

optimizations across these regions, such as loop fusion, are

often impractical to maintain in a production code because of

the combinatorial number of versions needed to support each

physics option combination. The five regions we look at were

chosen because they present a diverse set of properties, some

of which change significantly when the code is optimized, and

represent about 90% of the application’s runtime. It is worth

noting that when loop fusion is applied, each region becomes

a single loop. In this section, we briefly describe each region

and highlight what makes them unique.

Region 1 involves the stress calculation routines. It starts with

a memory-bound initialization routine followed by a compute-

bound calculation of element volumes and normal forces fol-

lowed by a memory-bound update of nodal values. Region 2

performs the hourglass calculation. It performs a memory-

intense copy of data followed by a series of compute-bound

small matrix-matrix multiplications followed by a memory-

bound update of nodal force values. Region 3 consists of two

memory-bound loops that update the velocity and position of

mesh nodes. Region 4 includes CalcKinematicsForElems and

CalcMonotonicQForElems, which gather values from nodes

to element centers followed by compute-intense calculations.

Region 5 includes MonotonicQforRegions and MaterialApply,

which have a significant number of control flow instructions

and instructions with dependencies. It also includes the routine

EvalEOSForElems, which performs a significant number of

memory copies and control flow operations.

B. Characterizing Region-based Performance

In this section, we focus on the performance characteristics

of each region and the impact of optimizations on them.

For brevity, we focus on the BG/Q architecture and leave

the cross-architecture analysis to the next section. Table VI

shows the performance characteristics of all five regions on

BG/Q. We show both the unoptimized case (NoOpt) and the

best program-level optimization in terms of execution time

(Best Time, i.e., fu+ac+dl). On this machine the maximum

theoretical IPC is two, split evenly between integer and floating

point instructions and STREAM memory bandwidth peaks at

28.5 GB/s.

TABLE VI. CHARACTERISTICS OF LULESH’S REGIONS.

BG/Q INT% FPU% IPC L1 Hits% MemBW (GB/s)

N
o
O

p
t

Region 1 47.4 52.6 0.541 90.4 18.38

Region 2 62.5 37.5 0.554 93.6 15.56

Region 3 74.1 25.9 0.216 75.7 20.88

Region 4 45.5 54.5 0.654 88.4 9.12

Region 5 62.4 37.6 0.321 77.2 13.72

B
es

t
T

im
e Region 1 42.7 57.3 0.791 93.9 19.02

Region 2 60.1 39.9 0.924 96.8 10.33

Region 3 78.5 21.5 0.248 85.9 21.40

Region 4 46.4 53.6 0.878 96.7 9.19

Region 5 50.3 49.7 0.606 90.6 7.81

INT = load/store/integer instructions; FPU = floating-point unit instructions;

IPC = instructions per cycle.

We observe in Table VI that Regions 1 and 3 both use a

significant fraction of the available memory bandwidth before

and after the best optimization. While Region 3 is limited by

memory bandwidth and has a low IPC in both the optimized

and unoptimized case, Region 1 has a moderate IPC before

optimization and a higher one after. Therefore, Region 1

has both memory and compute intense characteristics after

optimization. For Region 4, its compute intensity increases

with optimization resulting in a compute-bound region. In

general, IPC and cache hit rates increase as a result of

optimizations. For these regions, other metrics are not affected

significantly.

Regions 2 and 5 have lower bandwidth requirements and

higher IPC after optimization. These changes are due to elimi-

nating extra data motion required for temporary data structures

(ac) and the corresponding increase in compute intensity from

fused loops (fu). Region 2 changes from a combination of

compute and memory intensive loops to compute-bound after

optimizations. Region 5, on the other hand, has a significant

increase in the number of floating point operations relative to

integer operations, a much higher L1 cache hit rate, and a

relatively low IPC for its bandwidth requirements. Therefore,

Region 5 is dominated by instruction pipeline latency due to

many dependent instructions and branches when tuned.



Figure 5 provides a more detailed view of how the optimiza-

tions impact performance on BG/Q. Each optimization affects

the performance of regions differently. Global allocation (ac)

has a significant impact on Regions 1 and 2. While this is

the primary optimization that improves performance of these

regions, fusion (fu) also has a significant impact. Data layout

(dl) also has a small but positive impact on both regions.

Fusion and data layouts both decrease the performance

of Region 3 individually, but improve its performance when

combined. On BG/Q this is because fusing loops overwhelms

the limited number of stream prefetchers (four per thread),

but when combined with data layout transformations the

number of streams is reduced. Global allocation helps in some

optimization combinations and hinders performance in others.

Region 4 gets a small performance boost from loop fusion,

but almost all of its performance gain is from data layout

transformations. The performance of Region 5 improves when

allocation is applied by itself or with data layouts, however,

once loop fusion is applied allocation has no effect since loop

fusion contracts all the temporary arrays in Region 5 to scalars.
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Fig. 5. The effect of optimizations on execution time broken down by region
on BG/Q. Execution time is normalized to NoOpt.

C. In-depth Analysis and Cross-architectural Implications

In this section, we analyze in detail the behavior of the

top two Regions–2 and 5–in terms of execution time. We

start with a correlation between the improvements observed

in runtime and low-level architectural counters, which we will

refer to later in this section. Table VII shows the results of the

correlation analysis for both Pearson’s, which look for linear

relationships, and Spearman’s, which examine monotonic re-

lationships. We observe that the correlations are very strong

for all of the Pearson’s correlations except for Region 5 on the

Fusion, where the results are only strongly correlated. For the

Spearman’s correlations (using an α of 0.1), all of the values

pass the null hypothesis test, showing that a correlation exists.

Figure 6 shows execution time and dynamic power for

Region 2. This compute intense region presents some cross-

architectural trends. In all cases the lowest memory power and

TABLE VII. CORRELATIONS OF PERFORMANCE TO MONITORING

COUNTERS FOR A SUBSET OF LULESH’S REGIONS.

System Best Counter Pearson Corr. Spearman Corr.

Region 2

BGQ Inst. Exec. 0.974 0.905

Ivy Bridge L2 Misses 0.969 0.952

Fusion L1 Misses 0.752 0.809

Region 5

BGQ L2 Misses 0.999 0.976

Ivy Bridge L1 Misses 0.775 0.809

Fusion L2 Hits 0.618 0.714

highest core power is found in optimizations with loop fusion

(fu). Applying loop fusion increases the compute intensity of

the loops and results in more computation per unit time, but

less data motion. Except for two cases on Fusion (fu+ac+dl

and fu+dl), loop fusion always improves memory power and

execution time on all architectures. Table VII substantiates

these results. The BG/Q is best correlated to its instruc-

tion throughput, while the x86 architectures’ performance is

correlated to memory throughput. The optimizations to this

code region have reduced the data movement requirements

and have shifted the code balance on the BG/Q from being

memory bound to compute bound. The x86 architectures have

much stronger integer compute units and are still bounded

by memory performance after the optimizations. The very

high correlations for both the BG/Q and Ivy bridge show

that they are both strongly bound by compute and memory,

respectively. The Fusion core shows a good but not outstanding

correlation to memory performance indicating that with further

data movement optimizations, it may become compute bound

like the BG/Q.
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Fig. 6. The effect of optimizations on execution time, dynamic core power,
and dynamic memory power for Region 2 across all architectures.

The differences shown in the performance correlations of

the optimizations used in two different regions of interest

for LULESH are illustrative of the difficulties in performing

optimizations that are beneficial across many different archi-

tectures. For regions that can be well optimized, the factors

limiting performance/energy of the code may be different

between architectures or may switch after optimization for



some architectures and not others. For example, applying

further optimizations for data movement on code that may

be compute limited on a given architecture is unlikely to yield

positive results and may even be counter productive. However,

other architectures may benefit from further data movement

optimizations, leading to situations in which enhancing perfor-

mance/energy efficiency on one architecture leads to declining

performance/energy efficiency on another.

Region 5 has many memory-bound loops when loop fusion

is not applied. As Figure 7 shows, loop fusion is necessary

to extract the best performance on all systems. On BG/Q

and Ivy Bridge, loop fusion needs to be combined with data

layout transformations (fu+dl) and on Fusion with allocation

(fu+ac). In most cases though just applying loop fusion results

in the best or nearly the best memory power. However, unlike

the other regions where optimizing for execution time does

not result in a poor choice for power, Region 5 shows a

tradeoff. On BG/Q and Ivy Bridge just applying fusion is best

for power, but adding data layout transformations improves

performance at a steep power cost. On the Fusion system only

applying allocation is best for power, but not much better than

adding in loop fusion, which results in a large performance

gain.

a
c

a
c
+

d
l

d
l

fu

fu
+

a
c

fu
+

a
c
+

d
l

fu
+

d
l

a
c

a
c
+

d
l

d
l

fu

fu
+

a
c

fu
+

a
c
+

d
l

fu
+

d
l

a
c

a
c
+

d
l

d
l

fu

fu
+

a
c

fu
+

a
c
+

d
l

fu
+

d
l

N
o
rm

a
liz

e
d
 t
o
 N

o
O

p
t

0
.0

0
.5

1
.0

1
.5

2
.0

BGQ Ivy Bridge Fusion

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●
●

●

RunTime

DynPowCore

DynPowMem

NoOpt

Fig. 7. The effect of optimizations on execution time, dynamic core power,
and dynamic memory power for Region 5 across all architectures.

It is clear from examining the performance counter correla-

tions in Table VII that the optimizations for Region 5 have not

changed the (memory) boundedness of the code for any of the

architectures. Both x86 architectures correlate well to memory

based counters, while the BG/Q has an extraordinarily high

correlation to L2 performance. This emphasizes the extreme

dependency on memory of this region on the BG/Q, while

showing that other architectures are also memory bound. This

helps to illustrate the across-the-board benefit to memory/data

movement based optimizations on this region.

D. Dynamic Energy Analysis

Examining the dynamic energy consumption over the five

regions of LUELSH, the most interesting region for study is

Region 4, which is shown in Figure 8. We leave the other

regions out because in those there is a one-to-one correlation

between the best optimization for overall dynamic energy

usage and the best optimization for performance. Often, but

not always, that correlation extends to both dynamic memory

energy and dynamic core energy. However, the code version

in Region 4 with the best dynamic energy usage is different

on both Ivy Bridge and BG/Q than the best performing in

execution time (see Figure 8).
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Fig. 8. The effect of optimizations on execution time and dynamic energy
for Region 4 across all architectures.

VII. DISCUSSION

Table VIII presents a high level overview of the best

optimizations for dynamic power, dynamic power for each

subsystem, dynamic energy, and execution time of the appli-

cation. In this section, we discuss how overall program results

can obscure fine-grain performance and power differences

between architectures and code regions. While common in

performance analysis this is less common in power studies. We

discuss whether applying different optimizations to different

regions has the potential to improve power or performance of

an entire application. For this analysis it is important to note

that loop fusion (fu) can be applied independently to each

region; allocation (ac) can be applied independently to each

variable, but if a variable is used multiple times there will be a

memory usage cost; and data layout transformations (dl) must

be applied globally.

A. Architecture Specific Lessons

For BG/Q the overall (program as a whole) fastest set of

optimizations (fu+ac+dl) is also the best set for three of the

five regions and is the second best set for the other regions.

Thus, there is a clear best choice for performance. When

optimizing for core power, not applying any optimizations is

best if a global whole-program optimization scheme is used.

However, this contrasts with optimizing for memory power

where applying allocation and loop fusion is best. However,

overall power is best when applying just loop fusion.



TABLE VIII. BEST OPTIMIZATIONS FOR DYNAMIC POWER AND

ENERGY AND RUNTIME ACROSS REGIONS AND FOR THE WHOLE

PROGRAM.

Region 1 Region 2 Region 3 Region 4 Region 5 Program

B
G

/Q

PowCore NoOpt NoOpt fu+ac dl NoOpt NoOpt

PowMem fu+dl fu+ac dl fu fu+ac fu+ac

Power fu+dl fu fu NoOpt fu fu

Energy fu+ac+dl fu+ac+dl fu+dl dl fu fu+ac+dl

RunTime fu+ac+dl fu+ac+dl fu+dl fu+ac+dl fu+dl fu+ac+dl

Iv
y

PowCore dl fu+ac+dl NoOpt dl fu NoOpt

PowMem fu fu+ac+dl fu+dl fu+ac+dl fu+ac fu+dl

Power fu fu+ac+dl fu fu+ac+dl fu fu+ac+dl

Energy ac fu+ac+dl fu fu+ac+dl fu+ac fu+ac+dl

RunTime ac fu+ac fu+ac+dl ac+dl fu+dl fu+ac+dl

F
u

si
o
n PowCore fu+ac fu ac+dl fu+ac fu+ac fu+ac

PowMem fu+ac fu fu+dl fu fu fu

Power fu+ac fu ac+dl ac ac fu

Energy fu+ac fu+dl ac+dl fu+ac fu+ac fu+ac

RunTime fu+ac fu+dl dl fu+ac fu+ac fu+ac

A high level view of system power, however, obscures

that it is better not to optimize Region 4 when minimizing

total power. Also, some regions and domains benefit from

data layout changes or allocation in addition to loop fusion.

Further complicating the power optimization story is that

often the optimal optimization for either power or runtime

is only slightly better than the next one to three optimization

combinations. Therefore, finding a globally optimal solution,

by only selectively applying allocation, data layouts, and loop

fusion to various regions and variables will be challenging

even for the small number of optimizations and code regions

we consider in this paper.

For the Fusion system the results are less complicated.

Loop fusion and allocation demonstrate the best power and

performance tradeoff. These two optimizations result in the

best performance and core power, and the third best memory

and overall power. Also these optimizations are best, or close

to the best for performance and core power, for all regions

except for Region 3. Only if memory power becomes a

larger fraction of overall machine power would not applying

allocation be considered. Region 3 presents a stark contrast,

with data layouts being important for core power and per-

formance optimization. The Region 3 results show that for a

code with more memory-bound routines, optimizing for this

architecture might be significantly different than our LULESH

result (Region 3 accounts for a small percentage of LULESH

runtime).

On the Ivy Bridge system, the fastest and most power

efficient optimizations at a program level hide significant

differences between power domains and code regions. The

optimization (fu+ac+dl) that results in the best power usage

for Regions 2 and 4 and the best runtime for Region 3 are

the same as the optimizations with the best overall power

and runtime. However, this program-level view obscures that

Regions 1 and 5 would consume less power if only loop fusion

was applied. In particular, Region 5’s runtime reduction from

optimization is significant enough to reduce its contribution to

overall power usage. If instead of power we analyze dynamic

energy use, then the version of code with all optimizations

applied would be best and second best respectively on these

metrics. Therefore, without a power-bound the best optimiza-

tions converge, while under a power bound tuning on a per-

region basis becomes attractive. Therefore, the Ivy Bridge

system gives an example, where the quantity being optimized

for, how the machine is being run and the balance of properties

of code at a fine-level can significantly impact how to best tune

the code.

B. Cross Architecture Lessons

The results and analysis in this paper show that there

are some optimizations that are generally beneficial across

architectures, while other optimizations are beneficial only to

a subset of the architectures. This is not surprising due to the

large differences between the systems. The BG/Q processor

has a low clock frequency (1.6 GHz), in-order execution

and a large, but power efficient L2 cache. The AMD Fusion

architecture has much higher frequency (3.8 GHz) and uses

out-of-order execution on fewer (4), more sophisticated cores

than BG/Q, and has smaller but higher energy caches. Finally,

the Ivy Bridge system has ten sophisticated cores with a

frequency of 2.4 GHz and a high power L3 cache that is the

largest per core of the group.

Table VIII shows that loop fusion is often part of the suite

of optimizations that is best for power and runtime for all

architectures across most power domains and regions. Also,

allocation, in general helps performance across all regions.

Therefore, an important take away from this paper is the

insight that there are some optimizations that are generally

useful, and some that can best be deployed on a specific basis.

The Fusion results show that architecture specific optimiza-

tions for power on a per region basis, can make the extra work

to develop and maintain architecture specific code versions

justified.

Data layout transformations are sometimes important to

performance and power as seen in Region 3 for Fusion and

Region 4 for Ivy Bridge. Also, on BG/Q for Region 3 data

layout transformations along with loop fusion significantly

improves performance. However, the overall impact of data

layouts was small, isolated, and often negative, with significant

whole program performance gains only occurring on BG/Q.

Also, data layouts did not significantly reduce power on any

architecture. However, their positive impact in Region 3 shows

that they might be important for applications that have many

memory-bound regions and should be explored further in that

context.

A surprising result from this study is that optimizations

that reduce data motion often reduced core power. While not

applicable to BG/Q, loop fusion and data layouts reduced core

power for many regions despite increasing IPC. We believe

this reduction is due to less data motion within the on-chip

memory hierarchy, but cannot demonstrate this with current

power measurement technology (cannot measure individual

cache draw). Therefore, a takeaway from this work is that

power efficient cache technology can lead to significant power

savings. In addition, if fine-grain power optimizations are



important on future machines, then a similar finer-grain power

measurement infrastructure would be necessary.

Another significant cross-architecture result is that while

performance trends, and to a lesser extent power trends, are

similar at the program optimization level for BG/Q and Ivy

Bridge, this is not as evident at a region level. In addition,

the Fusion power and performance trends are significantly

different than the other two machines. These results show that

tuning differently for power at a fine-grain on each architecture

is profitable.

C. Applying Transformations to Production Codes

Some of the optimizations explored in this paper have been

applied back to full production hydrodynamics applications

to improve performance. For example, loop fusion transfor-

mations found in Regions 1 and 2 were applied to xALE, a

subset of ALE3D, and were later applied to the full code [3].

Allocation transformations were also applied, through the

TCMalloc library, to Ares, another hydrodynamics code [4].

In this case the transformations are only profitable on BG/Q.

The main impediment to applying data layout transformations

to production codes is their invasive nature and that different

architectures need different layouts [7].

Therefore, the application of the transformations in this

paper to optimize for power are in some cases applicable to

current production hydrodynamics codes. While today these

transformations have been focused only on performance as

machines become more power constrained the knowledge

presented in this paper provides a basis for trading power

and performance when optimizing a code. In other cases,

transformations such as data layouts will become applicable as

programmers adopt programming models, e.g., Kokkos [11] or

Chapel [12], that allow the data layout to be decoupled from

the array access patterns in loops.

VIII. RELATED WORK

Recent related work can be classified into the following

areas: modeling power and energy in HPC; and analyzing

performance, power, and energy trade offs. Modeling is a

useful vehicle to approximate power, energy, and tempera-

ture on systems that lack direct measurement capabilities.

These models employ performance information to estimate

the desired parameters [13], [14]. In addition, modeling is

essential to predict power and energy on future systems. A

few examples include modeling to estimate leakage energy on

a cache hierarchy [15], modeling power and energy at finer

granularities in terms of space and time [16], and modeling

individual system components [17], [18].

The second main body of work related to this paper ex-

plores tradeoffs between power, energy, and execution time,

especially for compiler transformations. Wang et al. [8] used

a polyhedral optimizer to generate multiple program variants

with different optimizations including loop fusion, unrolling,

tiling, and vectorization. Their results using LULESH show

a strong correlation between execution time and energy con-

sumption. However, they only analyzed a single parallel region

within LULESH and to do so they had to remove the indirect

access patterns from LULESH. A single variant of the most

expensive parallel region took hours to compile, making cross-

architecture portability and significant search space exploration

impractical. In addition, since their state-of-the-art tool does

not attempt to fuse loops across multiple regions and cannot

handle code with indirection, their lessons learned are not

portable back into the application code as we have shown [3].

Wang showed the power of auto-tuning techniques, but these

approaches are limited in their ability to consume production

applications because of the code complexities. This is one rea-

son why in this paper we focus on manual optimization rather

than automatic optimization. We believe both are appropriate,

but applicable in different situations.

Balaprakash et al. [19] presents a multi-objective optimiza-

tion framework to understand the trade-offs of performance,

power, and energy. This formulation of objective functions

can be used in auto-tuning environments with competing

objectives. The authors demonstrated empirically that these

trade offs exist. Tiwari et al. [13] uses compiler optimizations

(loop tiling and unrolling) to validate their power and energy

models of processor and memory components. Deshpande et

al. [15] showed that certain compiler optimizations have a

small effect on cache leakage.

Our work leverages existing power monitoring capabilities

on BG/Q [9] and, similar to previous work, identifies the

performance events that capture the driving force behind

power and energy consumption on LULESH. This work also

leverages the power monitoring capabilities on the x86 systems

by using the PowerInsight measurement devices [10].

This related work serves as a basis for analyzing why

certain program transformations trade off power and energy,

which is the focus of our work. Our contributions include a

detailed analysis of power and energy consumption of several

optimizations that have been successfully applied to explicit

hydrodynamic codes in terms of performance on multiple

architectures. Unlike previous work, we provide insights that

explain why optimizations that can be applied to production

codes today trade off power, energy and performance at a per-

region application basis. This fine-grained analysis over multi-

ple architectures shows optimizations that are generally useful

and those that are more targeted to specific architectures, or

code regions. This work is the first of its kind to explore

fine-grained analysis coupled with accurate high-frequency

power sampling on a variety of architectures and is important

in providing insight to application developers interested in

preparing their code bases for next generation supercomputers

that will, for the first time, have to operate in power/energy

conscious and potentially power constrained environments.

IX. SUMMARY

This paper investigates the effects of code optimizations

on LULESH on a per-region basis for two subsystems (core

and memory) on three different architectures. By analyzing

how optimizations change the power, performance, and energy



draw of an application, we affirm that tuning for these objec-

tives at a sub-application phase is necessary to fully realize

their potential. By performing our analysis at the granularity

an application developer performs optimizations, the insights

we gained in this paper are transferable directly back to

application developers and enables them to reason about

which optimizations to apply based on code characteristics,

their computer system, and the relative power consumption

by various domains within their system. We summarize our

findings as follows:

General observations

1. Our results extend beyond LULESH. We have success-

fully applied our findings to full hydrodynamics applica-

tions, including Ares and ALE3D, resulting in significant

improvements in time-to-solution.

2. Whole-program, single-domain power and performance

analysis can limit program optimizations’ gains in energy

efficiency. Power and energy profiles are phase and do-

main dependent.

3. Current power measurement technology is limited to

coarse-grain domains that hinder correlations between

performance and power, e.g., individual cache power draw

within a processor is not directly measurable.

Cross-architecture lessons

4. Optimizing for performance and energy are strongly cor-

related, i.e., performance optimized code results in energy

optimized code.

5. In many cases, optimizations do not increase power sig-

nificantly. As such, they can be applied under a similar

power budget.

6. The effect of optimizations on power is significantly larger

on the memory system than the processor. This empha-

sizes the relevance of optimizations on future systems,

which will increase the ratio of memory power to total

power.

Architecture-specific findings

7. Optimizations result in higher processor power on BG/Q

than x86 machines relative to each architecture’s baseline.

8. On Fusion, fu+ac is generally a good choice to improve

performance and power.

9. On BG/Q and Ivy Bridge, although fu+ac+dl results in

significant performance and energy improvements, the

best optimization combination depends on the objective

function and system subcomponent.

Future work includes evaluating these and other (e.g., vec-

torization) optimizations under different P-states and memory

frequencies on a per-region granularity to improve power and

energy with a marginal performance impact.
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